prof. dr hab. inż. Dariusz Łydżba, Politechnika Wrocławska, Wydział Budownictwa Lądowego i Wodnego
mgr inż. Michał Pachnicz,Politechnika Wrocławska, Wydział Budownictwa Lądowego i Wodnego
mgr inż. Magdalena Rajczakowska, Politechnika Wrocławska, Wydział Budownictwa Lądowego i Wodnego
dr inż. Adrian Różański, Politechnika Wrocławska, Wydział Budownictwa Lądowego i Wodnego
dr inż. Maciej Sobótka, Politechnika Wrocławska, Wydział Budownictwa Lądowego i Wodnego
mgr inż. Damian Stefaniuk, Politechnika Wrocławska, Wydział Budownictwa Lądowego i Wodnego
Autor do korespondencji e-mail: Ten adres pocztowy jest chroniony przed spamowaniem. Aby go zobaczyć, konieczne jest włączenie w przeglądarce obsługi JavaScript.
DOI: 10.15199/33.2017.06.16
W artykule przedstawiono analizę wyników badania w mikrotomografie komputerowym sieci spękań w próbkach skalnych, poddanych testom jednoosiowego ściskania. Próbki były skanowane w mikrotomografie komputerowym przed testem, następnie po obciążeniu siłą o wartości 40 – 50% siły niszczącej, a także po osiągnięciu granicy makrodylatancji (lub granicy wytrzymałości). Analiza uzyskanych trójwymiarowych obrazów skanowania pozwoliła opisać w sposób ilościowy morfologię sieci spękań: porowatość, rozkłady przestrzenne szerokości spękań i krętości, a także wskaźnik SMI (ang. structure model index). Znajomość wymienionych wielkości jest przydatna przy określaniu parametrów przepuszczalności badanego materiału.
Słowa kluczowe: krętość, porowatość, morfologia, mikrostruktura
* * *
Application of micro-computed tomography to assessment of the evolution of crack network in brittle materials
The paper presents the analysis of crack network development induced in rock samples, subjected to uniaxial compression. The samples were scanned using micro-computer tomography after three stages of load: before loading, after application of a force equal to 40–50% of ultimate limit and, finally, after reaching microdilatancy threshold (or ultimate limit force). The analysis of acquired 3D images at every loading stage included fracture network segmentation and determination of chosen quantities describing its morphology: porosity (fraction of void space), spatial distribution of fracture aperture, tortuosity as well as structure model index (SMI). The parameters can be used to determine permeability parameters of cracked material.
Keywords: tortuosity, porosity, morphology, microstructure.
Literatura
[1] Bear Jacob. 1972. Dynamics of Fluids in Porous Materials. New York. American Elsevier.
[2] Hirono Tetsuro, Takahashi Manabu, Nakashima Satoru. 2003. „In situ visualization of fluid
flow image within deformed rock by X-ray CT”. Engineering Geology 70 (1): 37 – 46.
[3] Nasseri, M. H. B., Young, R. P., Rezanezhad, F., & Cho, S. H. 2009. „Application of 3D X-ray CT scanning techniques to evaluate fracture damage zone in anisotropic granitic rock”. 3rd US-Canada rock mechanic symposium. Toronto. Canada. 55 – 56.
[4] Peyton, R. L., Haeffner, B.A.,Anderson, S. H., & Gantzer, C. J. 1992. „Applying X-ray CT to measure macropore diameters in undisturbed soil cores”. Geoderma 53 (3-4): 329 – 340.
[5] Ruiz de Argandoña Vicente, Ángel Rodríguez Rey, Carmen Celorio, Luis Suárez del Río,
Lope Calleja, J. Llavona. 1999. „Characterization by computed X-ray tomography of the evolution of the pore structure of a dolomite rock during freeze-thaw cyclic tests”. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy 24 (7): 633 – 637.
[6] Tsuchiyama A., T. Nakamura, T. Nakano & Nakamura, N. 2002. „Three-dimensional description of the Kobe meteorite by micro X-ray CT method: Possibility of three-dimensional curation of meteorite samples”. Geochemical Journal 36 (4): 369 – 390.
Otrzymano: 24.04.2017 r.
Materiały Budowlane 6/2017, str. 48-49 (spis treści >>)