mgr inż. Agnieszka Marczewska, Instytut Ceramiki i Materiałów Budowlanych w Warszawie, Oddział Szkła i Materiałów Budowlanych w Krakowie
mgr inż. Anna Balon-Wróbel, Instytut Ceramiki i Materiałów Budowlanych w Warszawie, Oddział Szkła i Materiałów Budowlanych w Krakowie
Autor do korespondencji e-mail: Ten adres pocztowy jest chroniony przed spamowaniem. Aby go zobaczyć, konieczne jest włączenie w przeglądarce obsługi JavaScript.
DOI: 10.15199/33.2017.09.24
W artykule omówiono charakterystykę i rolę powłok stosowanych w oszkleniach budowlanych. Dokonano identyfikacji wybranych wielofunkcyjnych energooszczędnych i/lub samoczyszczących powłok wykorzystywanych w konstrukcjach fasad wielkopowierzchniowych przez przedstawienie wyników badań ich składu chemicznego i grubości. Wyznaczono parametry świetlne i energetyczne wybranych szkieł. Porównano otrzymane charakterystyki spektrofotometryczne. Dokonano analizy wpływu właściwości świetlnych i energetycznych badanych szkieł powłokowych na efekty praktyczne związane z użytkowaniem oszkleń z podkreśleniem ich wielofunkcyjności.
Słowa kluczowe: szkło powłokowe, oszklenia budowlane, właściwości spektrofotometryczne, powłoki wielowarstwowe.
* * *
Facade glass with multifunctional coating
The article discusses the characteristics and role of the coatings used in construction glazing. Identified selected multifunctional energy saving and self-cleaning coatings used in large surface facade designs by presenting results of their chemical composition and thickness. The light and energy parameters of selected glasses were determined. The obtained spectrophotometric characteristics were compared. An analysis of the influence of the light and energy properties of the investigated coatings on the practical effects of using glazing with emphasis on their multifunctionality.
Keywords: coated glass, construction glazing, spectrophotometric properties, multilayer coatings.
Literatura
[1] Cannavale A., F. Fiorito, M. Manca, G. Tortorici, R. Cingolani, G. Gigli. 2010. „Multifunctional bioinspired sol-gel coatings for architectural
glasses”. Build. Environ 45: 1233 – 1243.
[2] Guan K. 2005. „Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO 2/SiO2 films”. Surf Coat Tech. 191 (2): 155 – 160.
[3] Kumar D., X. Wu, Q. Fu, J. W. C. Ho, P. D. Kanhere, L. Li, Z. Chen. 2015. „Hydrophobic sol–gel coatings based on polydimethylsiloxane for selfcleaning applications”. Materials Design 86: 855 – 862.
[4] Li D., F. Huang, S. Ding. 2011. „Sol-gel preparation and characterization of nanoporous ZnO/SiO 2 coatings with broadband antireflection properties”. Appl. Surf. Sci. 257: 9752 – 9756.
[5] Mellott N. P., C. Durucan, C. G. Pantano, M. Guglielmi. 2006. „Commercial and laboratory prepared titanium dioxide thin films for self-cleaning glasses: photocatalytic performance and chemical durability”. Thin Solid Films. 502 (1): 112 – 120.
[6] Moretti E., E. Belloni. 2015. „Evaluation of energy, thermal, and daylighting performance of solar control films for a case study in moderate climate”. Build. Environ. 94: 183 – 195.
[7] PN-EN 410:2011 – Szkło w budownictwie. Określenie świetlnych i słonecznych właściwości oszklenia.
[8] PN-EN 12898:2004 – Szkło w budownictwie. Określenie emisyjności.
[9] PN-EN 673:2011 – Szkło w budownictwie. Określenie współczynnika przenikania ciepła (wartość U). Metoda obliczeniowa.
[10] Sahu D. R., J. Huang. 2006. „Characteristics of ZnO/Cu/ZnO multilayer films on copper layerproperties”. Appl. Surf. Sci. 253: 827 – 832.
[11] Schottner G. 2001. „Hybrid sol-gel- derived polymers: Applications of multifunctional materials”. Chem. Mater. 13: 3422 – 3435.
[12] Singh M. C., S. N. Garg, R. Jha, 2008. „Different glazing systems and their impact on human thermal comfort-Indian scenario”. Build. Environ. 43: 1596 – 1602.
[13] Yang Ruihua, Jinyang Liu, Limei Lin, Yan Qu, Weifeng Zheng, Fachun Lai. 2016. „Optical properties and thermal stability of colored solar selective absorbing coatings with double-layer antireflection coatings”. Solar Energy 125: 453 – 459.
[14] Yates J. T. Jr. 2009. „Photochemistry on TiO2: Mechanism behind the surface chemistry”. Surface Sci. 603: 1605 – 1612.
[15] Zhao X., Q. Zhao, J. Yu, B. Liu. 2008. „Development of multifunctional photoactive self-cleaning glasses”. J Non-Crys Sol. 354 (12): 1424 – 1430.
Otrzymano: 26.06.2017 r.
Materiały Budowlane 9/2017, str. 104-107 (spis treści >>)