dr inż. Danuta Barnat-Hunek, Politechnika Lubelska, Wydział Budownictwa i Architektury
mgr Beata Klimek, Politechnika Lubelska, Wydział Budownictwa i Architektury
Autor do korespondencji e-mail: Ten adres pocztowy jest chroniony przed spamowaniem. Aby go zobaczyć, konieczne jest włączenie w przeglądarce obsługi JavaScript.
DOI: 10.15199/33.2017.09.30
Celem badań przedstawionych w artykule była analiza wpływu ilości dodatku styropianu pochodzącego z recyklingu na podstawowe parametry mechaniczne i fizyczne tynków. Wykonano badania wytrzymałości na ściskanie i zginanie, gęstości, porowatości, paroprzepuszczalności, nasiąkliwości, mrozoodporności oraz odporności na krystalizację soli. Stwierdzono, że dodanie styropianu do tynku w ilości 10% powoduje wzrost jego porowatości otwartej i paroprzepuszczalności. Dalsze zwiększanie dodatku styropianu powoduje obniżenie parametrów wytrzymałościowych oraz odporności na korozję solną i mrozową tynku. Optymalna ilość styropianu, jaką można stosować w tynkach, wynosi 10%.
Słowa kluczowe: tynki, styropian, przewodność cieplna, mrozoodporność.
* * *
Plasters with recycled polystyrene
The purpose of this study is to investigate the impact of recycled polystyrene additives on the plasters. The article presents the laboratory examinations of the basic physical and mechanical parameters such as compressive and flexural strength, density, porosity, vapour permeability, absorbability, frost resistance and salt corrosion resistance. It has been found that an increase of 10% in the amount of polystyrene additive in the plaster results in an increase in its porosity of open and vapor permeability. The gradual increase of the volume of the addition of polystyrene in the plaster reduces its strength and resistance to salt and frost corrosion.The optimum amount of polystyrene which can be used in this type of plasters is 10%.
Keywords: plasters, polystyrene, thermal conductivity, frost
resistance.
Literatura
[1] Barnat-Hunek Danuta, Rafat Siddique, Grzegorz Łagód. 2017. „Properties of hydrophobised lightweight mortars with expanded cork”. Construction and Building Materials 155: 15 – 25. DOI: 10.1016/j. conbuildmat. 2017.08.052.
[2] Barnat-Hunek Danuta, Beata Klimek. 2016. „Hydrofobizowane tynki z zeolitem”. Materiały Budowlane 529 (9): 14 – 16. DOI: 10.15199/33.2016.09.05.
[3] Barnat-Hunek Danuta, Grzegorz Łagód, Beata Klimek. 2017. „Evaluation of the contact angle and frost resistance of hydrophobised heat-insulating mortars with polystyrene”. AIP Conference Proceedings 1866, 1, 040004, Thermophysics. DOI 10.1063/1.4994484.
[4] Duan Ping, Luxia Song, Chunjie Yan, Daming Ren, Zhen Li. 2016. „Novel thermal insulating and lightweight composites from metakaolingeopolymer and polystyrene particles”. Ceramics International 43 (6): 5115-5120. DOI: 10.1016/j. ceramint. 2017.01.025.
[5] FantilliAlessandro P., Silvio Sicardi, Francesca Dotti. 2017. „The use of wool as fiber-reinforcement in cement-based mortar”. Construction and Building Materials 139: 562-569. DOI 10.1016/j. conbuildmat. 2016.10.096.
[6] Kaya Ayse, Filiz Kar. 2016. „Properties of concrete containing waste expanded polystyrene and natural resin”. Construction and Building Materials 105: 572-578. DOI: 10.1016/j. conbuildmat. 2015.12.177.
[7] Setyowati Erni. 2014. „Eco-building material of styrofoam waste and sugar industry fly-ash based on nano-technology”. Procedia Environmental Sciences 20: 245 – 253. DOI: 10.1016/j. proenv. 2014.03.031.
Otrzymano: 08.08.2017 r.
Materiały Budowlane 9/2017, str. 121-123 (spis treści >>)