logo

e-ISSN 2449-951X
ISSN 0137-2971
Pierwotna wersja - elektroniczna
Pierwotna wersja językowa - angielska

100 punktów za artykuły naukowe!

Zgodnie z Komunikatem Ministra Nauki z 5 stycznia 2024 r. w sprawie wykazu czasopism naukowych i recenzowanych materiałów z konferencji międzynarodowych, autorzy za publikację artykułów naukowych w miesięczniku „Materiały Budowlane” z dyscyplin: inżynieria lądowa, geodezja i transport; architektura i urbanistyka; inżynieriamateriałowa; inżynieria chemiczna; inżynieria mechaniczna, a także inżynieria środowiska, górnictwo i energetyka, otrzymują 100 pkt.

Validation of the favorable quantity of fly ash in concrete in the fracture toughness examinations through digital image correlation method

prof. dr hab. inż. Grzegorz Ludwik Golewski, Politechnika Lubelska, Wydział Budownictwa i Architektury
ORCID: 0000-0001-9325-666X

Adres do korespondencji: Ten adres pocztowy jest chroniony przed spamowaniem. Aby go zobaczyć, konieczne jest włączenie w przeglądarce obsługi JavaScript.

DOI: 10.15199/33.2020.10.02
Oryginalny artykuł naukowy

Streszczenie. W artykule skoncentrowano się na analizie procesów pękania w betonie z popiołem lotnym (fly ash – FA) z uwzględnieniem drugiego modelu pękania i określono parametr KIIc. Głównym celem badań było potwierdzenie zbieżności i określenie zakresu rozbieżności pomiędzy wynikami KIIc uzyskanymi na prasie MTS 810 i z zastosowaniem cyfrowej korelacji obrazu (Digital Image Correlation – DIC). Analiza wyników badań wykazała wyraźną zbieżność między wartościami uzyskanymi z obu urządzeń pomiarowych. Ponadto wyniki badań potwierdzają zależności z wcześniejszych doświadczeń dotyczących odporności na pękanie betonu zawierającego FA, przeprowadzonych przy pierwszym modelu pękania.
Słowa kluczowe: beton; popiół lotny; odporność na pękanie KIIc; walidacja; metoda cyfrowej korelacji obrazu; DIC.

Abstract. The article focuses on analyzing the fracture processes in fly ash (FA) concrete taking into account the second model of cracking and the KIIc parameter was determined. Two measuring devices were used in the studies. Themain goal of the studies was to confirmthe convergence and determine the discrepancy ranges, between the KIIc results obtained on the MTS 810 press and the use of the Digital Iimage Correlation (DIC). The analysis of the obtained test results showed clear convergences between the values obtained from both measuring devices. Furthermore, the presented test results also confirm the values of previous experiments on fracture toughness of concrete containing FA conducted at the first model of cracking.
Keywords: concrete; fly ash; fracture toughness KIIc; validation; digital image correlation method; DIC.

Literatura
[1] Ajdukiewicz Andrzej. 2012. „Zielony beton” w konstrukcjach – aspekty materiałowe i technologiczne’. Materiały Budowlane 484 (12): 2 – 6.
[2] Ajdukiewicz Andrzej. 2013. „Zielony beton” w konstrukcjach – aspekty projektowe i przykłady”. Materiały Budowlane 485 (1): 76 – 79.
[3] Ajdukiewicz Cezary, Marcin Gajewski, Przemysław Mossakowski. 2011. „Zastosowanie systemu optycznej korelacji obrazu „Aramis” do identyfikacji rys w elementach betonowych”. Materiały konferencyjne Transcomp – XIV International Conference Komputer Systems Aied Science, Industry and Transport, 2011.
[4] Andrew R. M. 2018. „Global CO2 emissions from cement production”. Earth System Science Data 10, 195 – 217.
[5] Błaszczyński Tomasz, Aldona Łowińska-Kluge, Błażej Zgoła. 2004. „Wpływ wykonawstwa na degradację betonu”. Materiały Budowlane 385 (9): 84 – 86.
[6] Bołtryk Michał, Anna Krupa. 2015. „Kompozyty cementowe z wypełniaczem organicznym modyfikowane domieszkami” .Materiały Budowlane 518 (10): 46 – 48.
[7] Czarnecki Lech. 2006. „Przyszłość betonu w warunkach zrównoważonego rozwoju”. Materiały Budowlane 411 (11): 22 – 24, 52.
[8] Czarnecki Lech, Zbigniew Paszkowski. 2016. „Naprawa, utrzymanie i rewitalizacja jako czynniki kształtujące zrównoważone budownictwo”. Materiały Budowlane 525 (5): 126 – 129. DOI: 10.15199/33.2016.05.57.
[9] Czarnecki Lech, Ryszard Więcławski. 2005. „Możliwości wykorzystania popiołów lotnych w budownictwie”. Materiały Budowlane 397 (9): 83 – 85.
[10] Giergiczny Zbigniew. 2019. „Fly ash and slag”. Cement and Concrete Research 124: b 105826.
[11] Giergiczny Zbigniew. 2009. „Dodatki mineralne – niezastąpione składniki współczesnego cementu i betonu”. Materiały Budowlane 439 (3): 46 – 50.
[12] Giergiczny Zbigniew. 2013. Popiół lotny w składzie cementu i betonu. Gliwice. Politechnika Śląska.
[13] Giergiczny Zbigniew, Jan Małolepszy, Janusz Szwabowski, Jacek Śliwiński. 2002. Cementy z dodatkami mineralnymi w technologii betonów nowej generacji. Górażdże Cement, Opole.
[14] Giergiczny Zbigniew,Albin Garbacik. 2010. „Współdziałanie dodatków mineralnych w składzie cementów wieloskładnikowych”. Materiały Budowlane 458 (10): 27 – 0,59.
[15] Golewski Grzegorz Ludwik. 2015. Procesy pękania w betonie z dodatkiem krzemionkowych popiołów lotnych. Lublin, Politechnika Lubelska.
[16] Golewski Grzegorz Ludwik. 2015. „Makroskopowa ocena procesów pękania w betonach z popiołami lotnymi”. Materiały Budowlane 519 (11): 210 – 212. DOI: 10.15199/33.2015.11.66.
[17] Golewski Grzegorz Ludwik. 2013. „Odporność na pękanie a mikrostruktura w betonach z dodatkiem popiołów lotnych”. Materiały Budowlane 494 (10): 28 – 30.
[18] Golewski Grzegorz Ludwik, Tomasz Sadowski. 2008. Rola kruszywa grubego w procesie destrukcji kompozytów betonowych poddanych obciążeniom doraźnym. Lublin. IZT Sp. z o.o.
[19] Golewski Grzegorz Ludwik. 2011. „Analiza procesów pękania w kompozytach betonowych z dodatkiem popiołów lotnych”. Materiały Budowlane 470 (10): 39 – 42.
[20] Gołaszewski Jacek. 2013. „Współpraca domieszek z cementami”. Materiały Budowlane 495 (11): 89 – 92.
[21] Goszczyńska Barbara, Wiesław Trąmpczyński, Mgdalena Bacharz, Justyna Tworzewska, Paweł Tworzewski. 2014. „Zastosowanie skanera optycznego 3D do analizy belek wzmocnionych taśmami FRP”. Logistyka 6: 4130 – 4137.
[22] Goszczyńska Barbara, Wiesław Trąmpczyński, Justyna Tworzewska, Paweł Tworzewski. 2014. „Doświadczalna analiza odkształceń przestrzennych belek żelbetowych z zastosowaniem skanera optycznego 3D”. Inżynieria i Budownictwo 3: 156 – 159.
[23] Goszczyńska Barbara, Justyna Tworzewska. 2014. „Określenie rysy na potrzeby analizy wyników badania procesu powstawania i rozwoju rys w belkach żelbetowych z zastosowaniem systemu Aramis”. Przegląd Budowlany 12: 24 – 29.
[24] Haustein Elżbieta. 2016. „Wpływ popiołu lotnego na proces wymywania wybranych metali ciężkich z betonu”. Materiały Budowlane 527 (7): 88 – 90. DOI; 10.15199/33.2016.05.57.
[25] Krawczyk Łukasz, Michał Gołdyn, Tadeusz Urban. 2017. „O niedokładności systemów cyfrowej korelacji obrazu”. Czasopismo Inżynierii Lądowej, Środowiska i Architektury 64 (3/I): 259 – 270. DOI: 10.7862/rb. 2017.120.
[26]Wiśniewska Krystyna. 2015. „Popioły z energetyki pełnowartościowymi surowcami dla budownictwa”. Materiały Budowlane 520 (12): 41. DOI: 10.15199/33.2015.12.12.

Przyjęto do druku: 24.09.2020 r.

 

Zobacz więcej / Read more >>

Materiały Budowlane 10/2020, strona 36-39 (spis treści >>)