logo

e-ISSN 2449-951X
ISSN 0137-2971
Pierwotna wersja - elektroniczna
Pierwotna wersja językowa - angielska

100 punktów za artykuły naukowe!

Zgodnie z Komunikatem Ministra Nauki z 5 stycznia 2024 r. w sprawie wykazu czasopism naukowych i recenzowanych materiałów z konferencji międzynarodowych, autorzy za publikację artykułów naukowych w miesięczniku „Materiały Budowlane” z dyscyplin: inżynieria lądowa, geodezja i transport; architektura i urbanistyka; inżynieriamateriałowa; inżynieria chemiczna; inżynieria mechaniczna, a także inżynieria środowiska, górnictwo i energetyka, otrzymują 100 pkt.

Open Access (Artykuł w pliku PDF)

Experimental tests on combustion of wood - CFRP composite beams in a full scale

dr inż. Bartosz Kawecki, Politechnika Lubelska, Wydział Budownictwa i Architektury
ORCID: 0000-0001-8134-5956
dr inż. Michał Pieńko, Politechnika Lubelska, Wydział Budownictwa i Architektury
ORCID: 0000-0002-9653-8539
dr hab. inż. Tomasz Lipecki, prof. PL, Politechnika Lubelska, Wydział Budownictwa i Architektury
ORCID: 0000-0002-2867-773X

Adres do korespondencji: Ten adres pocztowy jest chroniony przed spamowaniem. Aby go zobaczyć, konieczne jest włączenie w przeglądarce obsługi JavaScript. 

DOI: 10.15199/33.2023.07.06
Doniesienie naukowe

Streszczenie. W artykule przedstawiono wyniki porównawcze miejscowego spalania 24 belek w skali rzeczywistej, obciążonych statycznie, wykonanych z kompozytu drewno-CFRP oraz drewna klejonego. Wytężenie próbek wynosiło 90%, w klasie drewna klejonego GL24h. Mierzone były czas spalania do momentu zniszczenia belki, przyrost ugięcia i temperatura elementu. Podsumowując otrzymane wyniki, zauważalny jest trend pozwalający stwierdzić, że taśmy CFRP stosowane wewnątrz przekroju mogą zwiększać odporność ogniową belek, jednak muszą być chronione przez drewno w czasie oddziaływania ognia.
Słowa kluczowe: belki kompozytowe drewno-CFRP; belki z drewna klejonego; miejscowe działanie ognia; spalanie przy obciążeniu statycznym.

Abstract. The paper presents comparative results of the local combustion of 24 full scale beams, statically loaded, made of wood-CFRP composite and glue laminated timber. An effort of the samples was 90%, in the class of glue laminated timber GL24h. The combustion time until beams’ failure, deflection increment and element temperature were measured. Summarising the gathered results, a trend allowing to conclude that CFRP tapes used inside the cross-section can increase the fire resistance of the beams is noticeable, but they must be protected by the wood during fire exposure.
Keywords: wood-CFRP composite beams; glue laminated timber beams; local fire exposure; combustion under static load.

Literatura
[1] Nowak T. Zastosowanie materiałów kompozytowych do wzmacniania konstrukcyjnych elementów drewnianych, Materiały Budowlane. 2019; 1: 22 – 26.
[2] Sobczak-Piąstka J. Metoda badania belki zginanej wykonanej z drewna klejonego ze zbrojeniem mieszanym, Materiały Budowlane. 2021; 1: 30 – 32.
[3] Bakalarz M M, Kossakowski PG. Strengthening of Full-Scale Laminated Veneer Lumber Beams with CFRP Sheets, Materials. 2022; 15.
[4] Halicka A, Ślósarz S. Analysis of behavior and failure modes of timber beams prestressed with CFRP strips, Composite Structures. 2022; 301: 116171.
[5] Kawecki B. Selection of the parameters for numerical models of full girders made of wood-polymer composites reinforced with fibres (in Polish), Wydawnictwo Politechniki Lubelskiej, Lublin, Poland. http://bc.pollub. pl/dlibra/publication/13966, 2021.
[6] Kawecki B, Podgórski J.The Effect ofGlueCohesive Stiffness on the Elastic Performance of BentWood–CFRP Beams.Materials. 2020; 13: 1 – 230.
[7] Kawecki B. Guidelines for FEMmodelling of wood-CFRP beams using ABAQUS, Archives of Civil Engineering. 2021; 67: 175 – 191.
[8] Kawecki B, Podgórski J. 3D ABAQUS simulation of bent softwood elements, Archives of Civil Engineering. 2020; 66: 323 – 337.
[9] Kawecki B. Numerical Modelling and Experimental Testing on Polyurethane Adhesively Bonded Joints Behaviour in Wood-Wood and Wood-Carbon Fibre Reinforced Polymer Layouts,Advances in Science and Technology Research Journal. 2023; 17: 36 – 52.
[10] Firmanti A, Subiyanto B, Takino S, Kawai S. The critical stress in various stress levels of bending member on fire exposure for mechanical graded lumber, Journal of Wood Science. 2004; 50: 385 – 390.
[11] Firmanti A, Subiyanto B, Kawai S. Evaluation of the fire endurance ofmechanically graded timber in bending, Journal of Wood Science. 2006; 52: 25 – 32.
[12] Qin R, Zhou A, Chow CL, Lau D. Structural performance and charring of loaded wood under fire, Engineering Structures. 2021; 228: 111491.
[13] Schmid J, König J, Köhler J. Fire-exposed crosslaminated timber - Modelling and tests, 11th World Conference on Timber Engineering 2010,WCTE. 2010; 4: 3268 – 3276.
[14] Lineham SA, Thomson D, Bartlett AI, Bisby LA, Hadden RM. Structural response of fire-exposed crosslaminated timber beams under sustained loads. Fire Safety Journal. 2016; 85: 23 – 34.
[15] Fahrni R., Klippel M., Just A., Ollino A., Frangi A., Fire tests on glued-laminated timber beams with specific local material properties, Fire Safety Journal. 2019; 107: 161 – 169.
[16] Wang Y, Zhang J, Mei F, Liao J, Li W. Experimental and numerical analysis on fire behaviour of loaded cross-laminated timber panels. Advances in Structural Engineering. 2020; 23: 22 – 36.
[17] Yang TH,Wang SY, TsaiMJ, Lin CY, ChuangYJ. Effect of fire exposure on the mechanical properties of glued laminated timber. Materials and Design. 2009; 30: 698 – 703.
[18] Quiquero H, Chorlton B, Gales J. Performance of adhesives in glulam after short term fire exposure. International Journal of High-Rise Buildings. 2018; 7: 299 – 311.
[19] Chorlton B, Gales J. Mechanical performance of laminated veneer lumber and glulam beams after short-term incident heat exposure. Construction and Building Materials. 2020; 263: 120129.
[20] Ogawa H. Architectural application of carbon fibers development of new carbon fiber reinforced glulam. Carbon. 2000; 38,: 211–226.
[21] Martin ZA, Tingley DA. Fire resistance of FRP reinforced glulam beams, Proceedings of theWorld Conference on Timber Engineering. 2000.
[22] PN-EN 14080:2013 Timber structures. Glued laminated timber and glued solid timber. Requirements, in: Polski Komitet Normalizacyjny, Warsaw, Poland.
[23] Sulik P. Prędkość zwęglania wybranych krajowych gatunków drewna, Materiały Budowlane. 2022; 1: 101 – 104.
[24] PN-EN 1995-1-2:2008 Eurocode 5: Design of timber structures - Part 1-2: General - Structural fire design, in: Polski Komitet Normalizacyjny, Warsaw, Poland.
[25] PN-EN 1363-1:2020 Fire resistance tests - Part 1: General requirements, in: Polski Komitet Normalizacyjny, Warsaw, Poland.
[26] Krajnc N. Wood Fuels Handbook, Food and Agriculture Organization of the United Nations, Pristina, 2015.
[27] Cichy W, Witczak M, Walkowiak M. Fuel properties of woody biomass from pruning operations in fruit orchards, BioResources. 2017; 12: 6458 – 6470.

Przyjęto do druku: 5.06.2023 r.

Materiały Budowlane 07/2023, strona 29-32 (spis treści >>)