Open Access (Artykuł w pliku PDF)
Experimental shear resistance of plate girders with a corrugated web of different wave types
dr inż. Krzysztof Śledziewski, Politechnika Lubelska, Wydział Budownictwa i Architektury
ORCID: 0000-0003-3022-8105
dr inż. Marcin Górecki, Politechnika Lubelska, Wydział Budownictwa i Architektury
ORCID: 0000-0001-8746-8172
Adres do korespondencji: Ten adres pocztowy jest chroniony przed spamowaniem. Aby go zobaczyć, konieczne jest włączenie w przeglądarce obsługi JavaScript.
DOI: 10.15199/33.2023.09.05
Doniesienie naukowe
Streszczenie. W artykule przedstawiono wyniki badań laboratoryjnych wykonanych na belkach ze środnikami z blachy fałdowej o różnym profilu sinusoidalnym poddanych działaniu czteropunktowego zginania. Przeprowadzone badania wykazały, że kształt fali ma znaczny wpływ na nośność na ścinanie belek dwuteowych ze środnikiem sinusoidalnym. Uzyskane wyniki odniesiono również do wyznaczonej nośności normowej, która była na niższym poziomie, niż wynika to z badań doświadczalnych.
Słowa kluczowe: środnik sinusoidalny; nośność na ścinanie; nośność normowa; badania eksperymentalne.
Abstract. This paper presents the results of laboratory tests performed on beams with corrugated plate webs of different sinusoidal profiles subjected to four-point bending.The conducted tests showed that the parameters of the waveform have a significant effect on the shear strength of I-beams with sinusoidal webs. The obtained results were also related to the determined norm load capacities, which were at a lower level than the experimental results.
Keywords: sinusoidal web; shear strength; standard load capacities; experimental studies.
Literatura
[1] ElgaalyM, SeshadriA, Rodriguez R, Ibrahim S. Bridge girders with corrugated webs. Transp. Res. Rec. 2000; DOI: 10.3141/1696-19.
[2] Pasternak H, Kubieniec G. Plate girders with corrugatedwebs. Journal of Civil Engineering and Management. 2010;DOI: 10.3846/jcem.2010.17.
[3] Sayed-Ahmed EY. Plate Girders with Corrugated Steel Webs, Engineering Journal. 2005; t. 42, nr 1: 1 – 13.
[4] Ibrahim BSA. Steel Plate Girders with Corrugated Webs, Past Present and Future. Ain Shams University, 2015.
[5] El Metwally A, Loov RE. Corrugated steel webs for prestressed concrete girders, Materials and Structures/Materiaux et Constructions. 2003; DOI: 10.1617/13820.
[6] Cafolla J. Corrugated webs and Lateral Restraints in Plate Girders for Bridges. 1995; 312.
[7] Prathebha PJHH. Corrugated web steel girders- A state of the art review, International Journal Of Engineering Research And Development. 2018; t. 14, nr 9: 14 – 19.
[8] Wang S, He J, Liu Y. Shear behavior of steel I-girder with stiffened corrugated web, Part I: Experimental study, Thin-Walled Structures. 2018, 2019, DOI: 10.1016/j.tws.2019.02.025.
[9] Eldib MEAH. Shear buckling strength and design of curved corrugated steel webs for bridges. J Constr Steel Res. 2009; DOI: 10.1016/j.jcsr.2009.07.002.
[10] Huang L, Hikosaka H, Komine K. Simulation of accordion effect in corrugated steel web with concrete flanges, Comput Struct. 2004, DOI: 10.1016/j.compstruc.2003.07.010.
[11] Elgaaly M, Seshadri A, Rodriquez R, Ibrahim S. Bridge Girders with Corrugated Webs, Transportation Research Record: Journal of the Transportation Research Board. 2000; DOI: 10.3141/1696-19.
[12] Yi J, Gil H, Youm K, Lee H. Interactive shear buckling behavior of trapezoidally corrugated steel webs, Eng Struct. 2008; DOI: 10.1016/j.engstruct.2007.11.009.
[13] Górecki M, Pieńko M, Łagoda G. Numerical analysis of beamwith sinusoidally corrugatedwebs, AIP Conf Proc. 2018; DOI: 10.1063/1.5019162.
[14] Górecki M, Śledziewski K. Experimental Investigation of Impact Concrete Slab on the Bending Behavior of Composite Bridge Girders with Sinusoidal Steel Web, Materials. 2020; DOI: 10.3390/ma13020273.
[15] Śledziewski K, Górecki M. Finite Element Analysis of the Stability of a Sinusoidal Web in Steel and Composite. Materials. 2020; t. 13, nr 5: 1041.
[16] ElgaalyM,SeshadriA,HamiltonRW.Bending Strength of Steel Beams with Corrugated Webs, Journal of Structural Engineering. 1997; DOI: 10.1061/(ASCE)0733-9445(1997)123:6(772).
[17] He J, Wang S, Liu Y, Wang D, Xin H. Shear behavior of steel I-girder with stiffened corrugated web, Part II: Numerical study, Thin-Walled Structures, t. 147, nr February 2019, s. 106025, 2020, DOI: 10.1016/j. tws.2019.02.023.
[18] Leblouba M, Junaid MT, Barakat S, Altoubat S, Maalej M. Shear buckling and stress distribution in trapezoidal web corrugated steel beams, Thin-Walled Structures, t. 113, nr December 2016, s. 13–26, 2017, DOI: 10.1016/j.tws. 2017.01.002.
[19] Driver RG, Abbas HH, Sause R. Shear Behavior of Corrugated Web Bridge Girders. Journal of Structural Engineering. 2006, DOI: 10.1061/(ASCE)0733-9445.
[20] Moon J, Yi J, Choi BH, Lee HE. Shear strength and design of trapezoidally corrugated steel webs, J Constr Steel Res. 2009; DOI: 10.1016/j. jcsr. 2008.07.018.
[21] HassaneinMF, ElkawasAA, El HadidyAM, Elchalakani M. Shear analysis and design of high-strength steel corrugated web girders for bridge design, Eng Struct. 2017, DOI: 10.1016/j.engstruct.2017.05.035.
[22] Riahi F, BehraveshA, FardMY,Armaghani A. Shear Buckling Analysis of Steel Flat and Corrugated Web I-girders, KSCE Journal of Civil Engineering. 2018, DOI: 10.1007/s12205- -017-1530-9.
[23] Sayed-Ahmed EY. Plate girders with corrugated steel webs, Engineering Journal. 2005, DOI: 10.3846/jcem.2010.17.
[24] Kövesdi B, Jáger B, Dunai L. Bending and shear interaction behavior of girders with trapezoidally corrugated webs, J Constr Steel Res. 2016, DOI: 10.1016/j. jcsr. 2016.03.002.
[25] Jáger B, Dunai L, Kövesdi B. Experimental investigation of the M-V-F interaction behavior of girders with trapezoidally corrugated web, Eng Struct. 2017, DOI: 10.1016/j.engstruct. 2016.12.030.
[26] DASt-Richtlinie 015, 1990, Träger mit Schlanken Stegen.
[27] PN-EN 1993-1-05:2008, Projektowanie konstrukcji stalowych. Część 1-5: Blachownice.
[28] Górecki M, Śledziewski K. Influence of corrugated web geometry on mechanical properties of i-beam: Laboratory tests. Materials. 2022, DOI: 10.3390/ma15010277.
[29] PN-EN 1993-1-1:2006 Projektowanie konstrukcji stalowych. Część 1-1: Reguły ogólne i reguły dla budynków.
[30] Basiński W. Nośność dźwigarów o falistym środniku wzmocnionych żebrami podporowymi i przekątnymi. Gliwice, Wydawnictwo Politechniki Śląskiej, 2020.
Przyjęto do druku: 24.07.2023 r.
Materiały Budowlane 09/2023, strona 20-23 (spis treści >>)