Open Access (Artykuł w pliku PDF)
The influence of the type of frame used in the insulating glass unit on the fire resistance of the glazed partition
dr inż. Bartłomiej Sędłak, Instytut Techniki Budowlanej, Zakład Badań Ogniowych
ORCID: 0000-0002-4715-6438
mgr inż. Jacek Kinowski, Instytut Techniki Budowlanej, Zakład Badań Ogniowych
ORCID: 0000-0001-6591-7889
dr inż. Paweł Sulik, Instytut Techniki Budowlanej, Zakład Badań Ogniowych
ORCID: 0000-0001-8050-8194
Adres do korespondencji: Ten adres pocztowy jest chroniony przed spamowaniem. Aby go zobaczyć, konieczne jest włączenie w przeglądarce obsługi JavaScript.
DOI: 10.15199/33.2024.03.10
Oryginalny artykuł naukowy
Streszczenie. Celem pracy było zbadanie wpływu zmiany materiału, z jakiego wykonuje się ramki międzyszybowe w przeciwpożarowych szybach zespolonych, na zachowanie całego zestawu w przypadku pożaru w świetle wymagań dotyczących odporności ogniowej. W ramach pracy wykonano 2 badania, w których sprawdzono 6 elementów próbnych wypełnionych szybami zespolonymi o podobnej budowie, różniących się materiałem oraz wymiarami ramki międzyszybowej. Przeprowadzono badanie ramek wykonanych ze stali, aluminium oraz z tworzywa sztucznego. W każdym przypadku sprawdzone zostały ramki o grubości 12 i 18 mm. Wszystkie przebadane próbki zachowały szczelność oraz izolacyjność ogniową w całym cyklu badań. Artykuł zawiera analizę i porównanie uzyskanych wyników. Stwierdzono, że zmiana materiału ramek międzyszybowych w przeciwpożarowych szybach zespolonych nie ma istotnego wpływu na rezultat badań.
Słowa kluczowe: szyby ognioodporne; szyby zespolone; odporność ogniowa; izolacyjność ogniowa; szczelność ogniowa; bezpieczeństwo pożarowe.
Abstract. The aim of the study was to investigate the impact of changing the material from which inter frames of insulating glazed units in fire-resistant partitions are made on the behavior of the entire set in the event of a fire in the light of fire resistance requirements. Two tests on six test specimens filled with insulated glazed units of a similar structure, with the difference being the material of the inter-pane frame and its thickness were carried out. The tests were conducted for frames made of steel, aluminium and plastic. For each material thickness of tested frame was 12 and 18 mm. All of the tested samples maintained their integrity and thermal insulation over the full test distance. The work contains an analysis and comparison of the obtained results. The observations stated that changes in the construction of fire-resistant inter-pane frames of insulated glazed units, if the technical solutions described in the content are used, do not have a significant impact on the test results.
Keywords: fire resistant glazing; glass units; fire resistance; fire insulation; fire integrity; fire safety.
Literatura
[1] Sulik P, Sędłak B. Wybrane aspekty oceny odporności ogniowej przeszklonych elementów oddzielenia przeciwpożarowego. J. Civ. Eng. Environ. Archit. 2017; DOI: 10.7862/rb. 2017.100.
[2] Borowy A. Fire Resistance Testing of Glazed Building Elements in Požární Ochrana 2014. 2014, pp. 15 – 17.
[3] Laskowska Z, Borowy A. Szyby w elementach o określonej odporności ogniowej. Świat Szkła. 2015; 20(12): 10 – 15.
[4] Laskowska Z, Borowy A. Szyby zespolone w elementach o określonej odporności ogniowej. Świat Szkła. 2016; 21(3): 15 – 20, 28.
[5] Emmons H. The Needed Fire Science. Fire Saf. Sci. 1986; DOI: 10.3801/IAFSS. FSS. 1-33.
[6] Debuyser M, Sjöström J, Lange D, Honfi D, Sonck D, Belis J. Behaviour of monolithic and laminated glass exposed to radiant heating. Constr. Build. Mater. 2017; DOI: 10.1016/j.conbuildmat. 2016.09.139.
[7] WangY, et al. Fracture behavior of a four-point fixed glass curtain wall under fire conditions. Fire Saf. J. 2014; DOI: 10.1016/j.firesaf.2014.05.002.
[8] Wang Y, Hu J. Performance of laminated glazing under fire conditions. Compos. Struct. 2019; DOI: 10.1016/j. compstruct. 2019.110903.
[9] Wang Y, et al. Experimental study on critical breaking stress of float glass under elevated temperature. Mater. Des. 2014; DOI: 10.1016/j.matdes. 2014.03.038.
[10] Wang Y, Wang Q, Su Y, Sun J, He L, Liew KM. Fracture behavior of framing coated glass curtain walls under fire conditions. Fire Saf. J. 2015; DOI: 10.1016/j.firesaf. 2015.05.002.
[11] Pagni P, Joshi A. Users Guide to Break, The Berkeley Algorithm for BreakingWindow Glass in a Compartment Fire. 1991.
[12] Shields TJ, Silcock GWH, FloodMF. Performance of a single glazing assembly exposed to enclosure corner fires of increasing severity. Fire Mater. 2001; DOI: 10.1002/fam. 764.
[13] Shields TJ, Silcock GWH, Flood M. Performance of a single glazing assembly exposed to a fire in the centre of an enclosure. Fire Mater. 2002; DOI:: 10.1002/fam. 783.
[14] Harada K, Enomoto A, Uede K, T. Wakamatsu T. An Experimental Study On Glass Cracking And Fallout By Radiant Heat Exposure. Fire Saf. Sci. 2000; DOI: 10.3801/IAFSS. FSS. 6-1063.
[15] Keski-Rahkonen O. Breaking of window glass close to fire. Fire Mater. 1988; DOI: 10.1002/fam. 810120204.
[16] Babrauskas V. Glass breakage in fires. Fire Sci. Technol. Inc, 2011.
[17] Pagni P. 2002 Howard W. Emmons Invited Plenary Lecture – Thermal Glass Breakage. Fire Saf. Sci. 2003; DOI: 10.3801/IAFSS. FSS. 7-3.
[18] Sędłak B, Kinowski J, Sulik P, Kimbar G. The risks associated with falling parts of glazed facades in case of fire. Open Eng. 2018; DOI: 10.1515/eng-2018-0011.
[19] Shao Q, Li F, Chen T, Sun Z. Heat resistance and water protection effectiveness for large single-pane fireproof glass. J. Cent. South Univ. Technol. 2011;DOI: 10.1007/s11771-011-0961-6.
[20] Shao G, et al. Maximum temperature to withstand water film for tempered glass exposed to fire. Constr. Build. Mater. 2014; DOI: 10.1016/j. conbuildmat. 2014.01.094.
[21] Wu C-W, Lin T-H, LeiM, Chung T,Huang C, ChiangW. Fire Test OnANon-heat-resistant Fireproof GlassWith Down-flowingWater Film. Fire Saf. Sci. 2005; DOI: 10.3801/IAFSS. FSS. 8-327.
[22] Wu C-W, Lin T-H. Full-scale evaluations on heat resistance of glass panes incorporated with water filmor sprinkler in a roomfire. Build. Environ. 2007; DOI: 10.1016/j.buildenv.2006.08.017.
Przyjęto do druku: 20.02.2024 r.
Materiały Budowlane 3/2024, strona 45-49 (spis treści >>)