logo

e-ISSN 2449-951X
ISSN 0137-2971
Pierwotna wersja - elektroniczna
Pierwotna wersja językowa - angielska

100 punktów za artykuły naukowe!

Zgodnie z Komunikatem Ministra Nauki z 5 stycznia 2024 r. w sprawie wykazu czasopism naukowych i recenzowanych materiałów z konferencji międzynarodowych, autorzy za publikację artykułów naukowych w miesięczniku „Materiały Budowlane” z dyscyplin: inżynieria lądowa, geodezja i transport; architektura i urbanistyka; inżynieriamateriałowa; inżynieria chemiczna; inżynieria mechaniczna, a także inżynieria środowiska, górnictwo i energetyka, otrzymują 100 pkt.

Open Access (Artykuł w pliku PDF)

Open Access (Article in English PDF file)

Shear tests of beams reinforced longitudinally and transversely with FRP bars

mgr inż. Damian Szczech, Politechnika Łódzka, Wydział Budownictwa, Architektury i Inżynierii Środowiska
ORCID: 0000-0002-8357-2877
prof. dr hab. inż. Renata Kotynia, Politechnika Łódzka, Wydział Budownictwa, Architektury i Inżynierii Środowiska
ORCID: 0000-0002-7247-1229

Adres do korespondencji: Ten adres pocztowy jest chroniony przed spamowaniem. Aby go zobaczyć, konieczne jest włączenie w przeglądarce obsługi JavaScript. 

DOI: 10.15199/33.2024.04.06
Artykuł przeglądowy

Streszczenie. W artykule przedstawiono przegląd literatury w dziedzinie badania na ścinanie belek zbrojonych podłużnie i poprzecznie prętami FRP. Przegląd badań obejmuje zestawienie parametrów różnych zmiennych: rodzaju zastosowanego zbrojenia; wysokości użytecznej elementu; szerokości belek; smukłości ścinania; wytrzymałości betonu na ściskanie; stopnia zbrojenia podłużnego i poprzecznego; modułu sprężystości prętów; kształtu strzemion; porównania z elementami zbrojonymi prętami stalowymi, a także schematu statycznego. Na podstawie przeglądu wiedzy zaproponowano program badań własnych.
Słowa kluczowe: ścinanie; FRP; strzemiona GFRP; przekrój teowy; nośność na ścinanie.

Abstract. This article presents a review of research in the field of shear tests of beams with longitudinal and transverse FRP reinforcement. The research review includes a summary of the parameters of various variables: type of reinforcement, depth of the element, width of the beams, shear span to depth ratio, compressive strength of concrete, longitudinal and transverse reinforcement ratio, modulus of elasticity of bars, shape of stirrups, comparison with elements reinforced with steel bars, as well as the static scheme. Based on the foreign studies the own research program has been proposed.
Keywords: shear; FRP; GFRP stirrups; T-section beams; Shear strength.

Literatura
[1] Godycki-Ćwirko T. Ścinanie w żelbecie. Wydawnictwo Arkady 1968.
[2] Knauff M. Obliczanie konstrukcji żelbetowych według Eurokodu 2.Wydawnictwo Naukowe PWN 2017.
[3] Tottori S, Wakui H. Shear capacity of RC and PC beams using FRP reinforcement. Special Publication. 1933: 138: 615 – 632.
[4] Guadagnini M. Shear Behaviour and Design of FRP RC Beams. Dissertation PhD thesis, The University of Sheffield 2002.
[5] FIB Task Group 9.3 FRP reinforcement in RC structures. Bulletin No. 40, 2007.
[6] Clarke JL. Alternative Materials for the Reinforcement and Prestressing of Concrete. Blackie Academic & Professional, London, England 1993.
[7] Nagasaka T, Fukuyama H, Tanigaki M. Shear performance of concrete beams reinforced with FRP stirrups. Special publication 1993: 138 789 – 812.
[8] Maruyama K, Zhao W. Flexural and Shear Behavior of Concrete Beams Reinforced by FRP Rods. International Conference on Corrosion and Corrosion Protection of Steel in Concrete, Sheffield. 1994, p. 1330 – 1339.
[9] Okamoto T, Nagasaka T, Tanigaki M. Shear capacity of concrete beams using FRP reinforcement. Journal of Structural and Construction Engineering. 1994: 455 27 – 136.
[10] Zhao W, Maruyama K, Suzuki H. Shear behavior of concrete beams reinforced by FRP rods as longitudinal and shear reinforcement. RILEM Proc. Chapman & Hall 1995.
[11] Nakamura H, Higai T. Evaluation of shear strength of concrete beams reinforced with FRP. Concrete Library of JSCE 1995, No. 508/V- -26: 111-123.
[12] Vijay PV, Kumar SV, Ganga Rao HVS. Shear and ductility behavior of concrete beams reinforced with GFRP rebars. Proceedings of the 2nd International Conference on Advanced Composite Materials in Bridges and Structures, Montreal 1996.
[13] Zhao W, Maruyama K. Size effect in shear behavior of FRP reinforced concrete beams. Advanced composite materials in bridges and structures. 1996, p. 227 – 234.
[14] Duranovic N, Pilakoutas K, Waldron P. Tests on concrete beams reinforced with Glass Fibre Reinforced Plastic bars. Non-metallic (FRP) Reinforcement for Concrete Structure. Proceedings on the Third International Symposium, Vol. 2, October 1997: 479-486.
[15] Alsayed SH, Al-Salloum YA, Almusallam T. H. Shear design for beams reinforced by GFRP bars. Non-metallic (FRP) Reinforcement for Concrete Structure. Proceedings on the Third International Symposium. 1997, Vol. 2, October, p. 285-292.
[16] Shehata E, Morphy R, Rizkalla S. Fibre Reinforced Polymer Shear Reinforcement for Concrete Members: Behaviour and Design Guidelines. Canadian Journal of Civil Engineering. 2000; 27: 859 – 872.
[17] Alkhrdaji T, Wideman M, Belarbi A, Nanni A. Shear strength of GFRP RC beams and slabs. Proceedings of the international conference, Composites in Construction 2001.
[18] Matta F, Nanni A, Galati N, Mosele F. Size effect on shear strength of concrete beams reinforced with FRP bars. Proc. of the 6th Int. Conference on Fracture Mechanics of Concrete and Concrete Structures. Balkema/Taylor & Francis. 2007; 2: 17 – 22.
[19] Imjai T. Design and analysis of curved FRP composites as shear reinforcement for concrete structures. Dissertation PhD thesis, The University of Sheffield, Dept. of Civil and Structural Engineering, 2007.
[20] Hegger J., Niewels J., Kurth M. Shear analysis of concrete members with Fiber Reinforced Polymers (FRP) as internal reinforcement. Sydney, Australia, 2009.
[21] Niewels J. Zum Tragverhalten von Betonbauteilenmit Faserverbundkunststoffbewehrung. Rheinisch-WestfälischeTechnische Hochschule Aachen, Lehrstuhl und Institut für Massivbau. PhD diss., Dissertation in Vorbereitung. 2008.
[22] Ascione L, Mancusi G, Spadea S. Flexural behaviour of concrete beams reinforced with GFRP bars. Strain. International Journal for Experimental Mechanics. 2010; 46: 460 – 469.
[23] Spadea S. Comportamento di elementi di calcestruzzo armato con barre di materiale composito fibrorinforzato. University of Salerno, Fisciano, Italy. 2010.
[24] Ahmed EA, El-Salakawy EF, Benmokrane B. Shear Performance of RC Bridge Girders Reinforced with Carbon FRP Stirrups. Journal of Bridge Engineering ASCE. 2010.
[25] Bentz EC, Massam L, Collins MP. Shear Strength of Large Concrete Members with FRP Reinforcement. Journal of Composites for Construction. 2010: 14 (6): 637 – 646.
[26] El-Mogy M, El-Ragaby A, El-Salakawy E. Effect of transvers reinforcement on the flexual behaviour of continuous concrete beams reinforced with FRP. Journal of Composites for Construction ASCE 2011.
[27] Kamińska M, Szymczak P, Olbryk P, Chołostiakow S. Badania betonowych belek zbrojonych prętami kompozytowymi. Sprawozdanie z badań. Łódź, 2012.
[28] Yang F. Deformation Behaviour of Beams Reinforced with Fibre Reinforced Polymer Bars under Bending and Shear. Dissertation PhD. University of Sheffield, 2015.
[29] Tomlinson D, Amir F. Performance of concrete beams reinforced with basalt FRP for flexure and shear. Journal of Composites for Construction. 2014; 19.2.
[30] Issa MA, Ovitigala T, IbrahimM. Shear Behavior of Basalt Fiber Reinforced Concrete Beams with and without Basalt FRP Stirrups. Journal of Composites for Construction. 2015; 20.4.
[31] Said M, Adam MA, Mahmoud AA, Shanour AS. Experimental and analytical shear evaluation of concrete beams reinforced with glass fiber reinforced polymers bars. Construction and Building Materials. 2016; 102: 574 – 591.
[32] Bywalski C, Drzazga M, Kaźmierowski M, Kamiński M. Badania belek zbrojonych na ścinanie prętami GFRP. Materiały Budowlane. 2016; 9 (529): 72 – 73.
[33] Cholostiakow S, Di Benedetti M, Pilakoutas K, GuadagniniM. Effect of Beam Depth on Shear Behaviour of FRP RC Beams. J. of Comp. for Constr. 2018; 10.1061.
[34] Jumaa GB, Yousif AR. Size effect on the shear failure of high-strength concrete beams reinforced with basalt FRP bars and stirrups. Construction and Building Materials. 2019; 209: 77–94.
[35] Krall M, Polak MA. Concrete beams with different arrangements of GFRP flexural and shear reinforcement. Engineering Structures. 2019: 198.
[36] Yuan Y, Wang Z. Shear behavior of large-scale concrete beams reinforced with CFRP bars and handmade strip stirrups. Composite Structures. 2019: 227.
[37] Fan X, Zhou Z, Tu W, Zhang M. Shear behaviour of inorganic polymer concrete beams reinforced with basalt FRP bars and stirrups. Composite Structures. 2021: 255.
[38] Szczech D, Kotynia R. Shear tests on GFRP reinforced concrete beams. 10th International Conference on Advanced Models and New Concepts in Concrete and Masonry Structures. MATEC Web od Conferences 2020 Vol. 323.
[39] Szczech D, Kotynia R. Effect of shear reinforcement ratio on the shear capacity of GFRP reinforced concrete beams.Archives of Civil Engineering. 2021, Volume 67, Issue 1.

Przyjęto do druku: 2.04.2024 r.

Materiały Budowlane 4/2024, strona 32-36 (spis treści >>)