dr inż. Zofia Szweda, Politechnika Śląska; Wydział Budownictwa
ORCID: 0000-0001-5543-7494

Adres do korespondencji: Ten adres pocztowy jest chroniony przed spamowaniem. Aby go zobaczyć, konieczne jest włączenie w przeglądarce obsługi JavaScript.

DOI: 10.15199/33.2019.08.08

Artykuł dotyczy oceny metody prognozowania trwałości płyt stropowych typu HC-500 w warunkach zagrożenia agresją chlorkową z uwzględnieniem wartości współczynnika dyfuzji chlorków z betonu pobranego bezpośrednio z płyt prefabrykowanych. Wykorzystano współczynnik dyfuzji wyznaczony na podstawie termodynamicznego modelu migracji i badań własnych oraz wartość współczynnika zalecaną wg norm wzorcowych fibModel-Code 2006 i fibModel-Code 2010 wyznaczoną na podstawie badania własnego wg normy NT BUILD 492.

Słowa kluczowe: współczynnik dyfuzji chlorków; prognozowanie trwałości płyt typu C-500.

The evaluation of forecasting method concerning the durability of prefabricated floor HC-500 slabs in conditions of danger of chloride ions aggression 

Abstract. The article focus on the evaluation of forecasting method concerning the durability of prefabricated floor HC-500 slabs in conditions of danger of chloride ions aggression taking into consideration values of diffusion coefficient of concrete taken directly from prefabricated slabs. Diffusion coefficient obtained on the basis of thermodynamic migration model and own research and recommended by draft of norms fib Model-Code 2006 and fib Model-Code 2010 coefficient value obtained on the basis of own research in accordance with NT BUILD 492 were used.

Keywords: chloride diffusion coefficient; forecasting the durability of HC-500. 

 

Literatura
[1] ACI 318M-02/318 RM02 (Metric Version) Building code requirementts for structural concrete (ACI 318M-02) and commentary (ACI 318RM-02) American Concrete Institute, Farmington Hills. (2002).
[2] Aruz Petcherdchoo. 2013. „Time dependent models of apparent diffusion coefficient and surface chloride for chloride transport in fly ash concrete.”, Construction and Building Materials 38, 497 – 507 DOI: 10.1016/j.conbuildmat.2012.08.041.
[3] BS 8110: Part 1: 1997 (Amendment No. 1: 1998) Structural use of concrete. British Standard Institution, September (1998).
[4] Lingjie Wu, Wei Li, Xiaoniu Yu 2017. „Time-dependent chloride penetration in concrete in marine environments“. Construction and Building Materials 152 (2017) 406–413. DOI: 10.1016/j.conbuildmat.2017.07.016.
[5] Model Code for Service Life Design, CEB FIB, February 2006 (fib – Bulletin 34).
[6] Model Code, CEB FIB, February 2010 (fib – Bulletin 56).
[7] NT BUILD 492. Concrete, mortar and cement-based repair materials, chloridemigration coefficient fromnon-steady-statemigration experiments. Nordtest Method 492; 1999. [8] PN-EN 1992-1-1 Eurokod 2 – Design of concrete structures – Part 1-1: General rules and rules for buildings.
[9] PN-EN 206-1:2014 Beton. Część 1:Wymagania, właściwości, produkcja i zgodność.
[10] Szweda Zofia. 2018. „The analysis of the protective features of the concrete used in prefabricated prestressed concrete slabs (type HC) for the chlorides penetration.” MATEC Web of Conf., vol. 163 2261-236X. DOI: 10.1051/matecconf/201816305006.
[11] Szweda Zofia. 2018. „Comparison of diffusion and migration coefficients determined from tests on concrete in prestressed floor slabs HC-500”. 2019. IOP Conference Series Materials Science and Engineering 471:052034. DOI: 10.1088/1757-899X/471/5/0520341757-8981.
[12] Szweda Zofia. 2019. „Analiza wartości współczynników dyfuzji w betonie płyt stropowych typu HC-500”. Materiały Budowlane 563 (7): 34 ÷ 35. DOI: 10.15199/33.2019.07.05.

 

Przyjęto do druku: 24.07.2019 r.

 

Czytaj więcej >>

Materiały Budowlane 8/2019, strona 56-57 (spis treści >>)